Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors

نویسندگان

  • Ahmad Amoush
  • May Abdel‐Wahab
  • Mohamed Abazeed
  • Ping Xia
چکیده

The purpose of this study was to quantify the systematic uncertainties resulting from using free breathing computed tomography (FBCT) as a reference image for image-guided radiation therapy (IGRT) for patients with pancreatic tumors, and to quantify the associated dosimetric impact that resulted from using FBCT as reference for IGRT. Fifteen patients with implanted fiducial markers were selected for this study. For each patient, a FBCT and an average intensity projection computed tomography (AIP) created from four-dimensional computed tomography (4D CT) were acquired at the simulation. The treatment plan was created based on the FBCT. Seventy-five weekly kilovoltage (kV) cone-beam computed tomography (CBCT) images (five for each patient) were selected for this study. Bony alignment without rotation correction was performed 1) between the FBCT and CBCT, 2) between the AIP and CBCT, and 3) between the AIP and FBCT. The contours of the fiducials from the FBCT and AIP were transferred to the corresponding CBCT and were compared. Among the 75 CBCTs, 20 that had > 3 mm differences in centers of mass (COMs) in any directions between the FBCT and AIP were chosen for further dosimetric analysis. These COM discrepancies were converted into isocenter shifts in the corresponding planning FBCT, and dose was recalculated and compared to the initial FBCT plans. For the 75 CBCTs studied, the mean absolute differences in the COMs of the fiducial markers between the FBCT and CBCTs were 3.3 mm ± 2.5 mm, 3.5 mm ± 2.4 mm, and 5.8 mm ± 4.4 mm in the right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. Between the AIP and CBCTs, the mean absolute differences were 3.2 mm ± 2.2mm, 3.3 mm ± 2.3 mm, and 6.3 mm ± 5.4 mm. The absolute mean discrepancies in these COMs shifts between FBCT/CBCT and AIP/CBCT were 1.1 mm ± 0.8 mm, 1.3 mm ± 0.9 mm, and 3.3 mm ± 2.6 mm in RL, AP, and SI, respectively. This represented a potential systematic error. For the 20 CBCTs that had COM discrepancies > 3 mm in any direction, the average reduction in planning target volume (PTV) coverage (PTV volume receiving 100% of prescription dose) was 5.3% ± 3.1% (range: 0.7%-12.8%). Using FBCT as a reference for IGRT may introduce potential interfractional systematic COM shifts if the FBCT is acquired at a different breathing phase than the average breathing phase. The potential systematic error could be significant in the SI direction and varied among patients for the other directions. AIP is a better choice of reference image set for IGRT in order to correct interfractional variations due to respiratory motion and nonrespiratory organ displacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standard edge detection algorithms versus conventional auto-contouring used for a three-dimensional rigid CT-CT matching

Background: To reduce uncertainties of patient positioning, the Computerized Tomography (CT) images acquired at the treatment planning time can be compared with those images obtained during radiation dose delivery. This can be followed during dose delivery procedure as Image Guided radiotherapy (IGRT) to verify the prescribed radiation dose delivery to the target as well as to monitor ...

متن کامل

Comparison of automatic image registration uncertainty for three IGRT systems using a male pelvis phantom

A series of phantom images using the CIRS Virtual Human Male Pelvis was acquired across available dose ranges for three image-guided radiotherapy (IGRT) imaging systems: Elekta XVI CBCT, Varian TrueBeam CBCT, and TomoTherapy MV CT. Each image was registered to a fan-beam CT within the XVI software 100 times with random initial offsets. The residual registration error was analyzed to assess the ...

متن کامل

Automated differentiation of benign and malignant liver tumors by Ultrasound Images

Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...

متن کامل

An accuracy assessment of different rigid body image registration methods and robotic couch positional corrections using a novel phantom.

PURPOSE Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software inclu...

متن کامل

Clinical utility of indigenously formulated single-vial lyophilized HYNIC-TOC kit in evaluating Gastro-entero Pancreatic neuro endocrine tumours

  Objective(s): The objective of this study was to evaluate the performance and utility of 99mTc HYNIC-TOC planar scintigraphy and SPECT/CT in the diagnosis, staging and management of gastroenteropancreatic neuroendocrine tumors (GPNETs). Methods: 22 patients (median age, 46 years) with histologically proven gastroentero-pancreatic NETs underwent 99mTc HYNIC-TOC whole body scintigraphy and regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015